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Out-of-distribution (00D) detection aims to detect test samples outside the training category space, which is an essential component
in building reliable machine learning systems. Existing reviews on OOD detection primarily focus on method taxonomy, surveying the
field by categorizing various approaches. However, many recent works concentrate on non-traditional OOD detection scenarios, such
as test-time adaptation, multi-modal data sources and other novel contexts. In this survey, we uniquely review recent advances in
00D detection from the task-oriented perspective for the first time. According to the user’s access to the model, that is, whether the
00D detection method is allowed to modify or retrain the model, we classify the methods as training-driven or training-agnostic.
Besides, considering the rapid development of pre-trained models, large pre-trained model-based OOD detection is also regarded
as an important category and discussed separately. Furthermore, we provide a discussion of the evaluation scenarios, a variety
of applications, and several future research directions. We believe this survey with new taxonomy will benefit the proposal of
new methods and the expansion of more practical scenarios. A curated list of related papers is provided in the Github repository:

https://github.com/shuolucs/Awesome-Out-Of- Distribution-Detection
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Table 1: OOD detection performance for CIFAR-100 (ID) with ResNet-34. Training with CIDER
significantly improves OOD detection performance.

00D Dataset
Method SVHN Places3635 LSUN iSUN Texture

FPR|, AUROCt FPR| AUROCT FPR] AUROCt FPR| AUROCT FPR], AUROCT FPR| AUROCT

Without Contrastive Learning

Average

MSP 78.89 79.80 84.38 74.21 83.47 75.28 84.61 74.51 86.51 72.53 8312 7527
ODIN 7016 8488 82.16 75.19 76.36 20.10 79.54 79.16 83.28 75.23 78.70  79.11
Mahalanobis 87.09 80.62 84.63 T3.89 84.15 79.43 83.18 T8.83 61.72 84.87 B80.15  79.53
Energy 66.91 83.25 81.41 16.37 59.77 56.69 66.52 84.49 79.01 79.96 7072  B2.55
GODIN 74.64 84.03 89.13 68.96 93.33 67.22 94.25 65.26 86.52 69.39 81.57 7097
LogitNorm 539.60 90.74 80.25 T8.58 81.07 52.99 84.19 80.77 86.64 75.60 78.35 BL74
With Contrastive Learning
ProxyAnchor 87.21 8243 70.10 79.84 37.19 91.68 70.01 84.96 63.64 84.99 66.03  B4.78
CE + 5SimCLE 2482 9445 26.63 7148 56.40 29.00 66.52 83.82 63.74 82.01 39.62  B4.15
C51 44.53 92.65 79.08 76.27 75.58 83.78 76.62 84.98 61.61 86.47 67.48  B4.83
S5D+ 3L19 94.19 77.74 79.90 79.39 85.18 B0.85 84.08 66.63 8618 67.16  85.90
KNM+ 39.23 9278 80.74 T7.58 48.99 89.30 74.99 82.69 57.15 88.35 60.22 86.14
CIDER 23.09 95.16 79.63 73.43 16.16 96.33 T1.68 82.98 43.87 90.42 46.89  B7.67
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Table 3: Ablation study on loss component. Results (in AUROC) are based on CIFAR-100 trained
with ResNet-34. Training with only L., suffices for ID classification. Inter-class dispersion
induced by Lg; 18 key to OOD detection.

Loss Components AUROCT

ID ACCt
Leomp L dis Places365 LSUN i1SUN Texture SVHN AVG
v 79.63 85.75 8445 8721 01.33 85.67 75.19
v 54.76 69.81 5499 44726 46.48 54.06 2.03
v v 73.43 96.33 8298 90.42 95.16 87.67 75.35
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Figure 3: (a): UMAP (Mclnnes et al., 2018) visualization of the features when the model is trained
with CE vs. CIDER for CIFAR-10 (ID). (b): CIDER makes OOD samples more separable from ID
compared to CE (c.f. Table .
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Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020). Unsupervised learning of visual features
by contrasting cluster assignments. Advances in neural information processing systems, 33, 9912-9924.
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Table 1: OOD detection performance on methods trained on labeled CIFAR-100 as ID dataset using
backbone network of ResNet-34. | means smaller values are better and T means larger values are
better. Bold numbers indicate superior results.

00D Datasets

Methods SVHN Places365 LSUN iSUN Textures Average
FPR| AUROCt FPR| AUROCt FPR| AUROCt FPR, AUROCt FPR, AUROCt FPR| AUROC?t

MSP 7889 7980 8438 7421 8347 7528 B461 7451 8651 7253 8357  75.27
Vim 7342 8462 8534 6934 8696 6974 8535 7316 7456 7623 8113 7462
ODIN 70.16 8488 8216 7519 7636 80.1 7954 7916 8528 7523  7R70  78.01
Energy 6601 8525 8141 7637 5977 8669 6652 8449 7901 7996 7072 8255
VOS 43.24 82.8 76.85 7863 7361 8469 6965 8632  57.57 8731 6418  83.05
CSI 4453 9265 7908 7627 7558 8378 7662  B498  6le6l 8647  67.48  84.83
SSD+ 31.19 9419 7774 7990 7939 8518 8085 8408 6663 8618  67.16  85.01
kKNN+ 3923 9278 8074 7758 4890 8930 7499 8269  57.15 8835 6022 86.14
NPOS 1062 9740 6796 7881 2061 9261 3504 8804 2492 0135 3201  89.84
CIDER 1255 97.83 7993 7487 3024 9279 4597 8894 3555 0226 4085  89.34

PALM (ours) 3.29 99.23 64.66 84.72 0.86 08.01 28.71 94.64 33.56 92.49 28.02 93.82
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[ CIDER P
3 PALM
-
0.0 0.4 0.8
T_
0.0 02 04 06 08 1.0
Cosine similarity
_, Compactness | Number of far
Methods (in degree) ID samples (%) |
CIDER 31.08 25.79
PALM 24.21 15.71
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__Approaches with only
ID Data (§ 3.1)

|_Approaches with both ID
and OO0 Data (§ 3.2)

— Post-hoe Approaches (§ 4.1)

(§42)

MoodCat [22], RAE [23], MOOD [24], MOODw2 [25], PRE [26], LMD [27] DiffGuard [28],

Test-time Adaptive Approaches

— Reconstruction-based ™ DenoDiff [29]
| (S L_{HVCM [30], DDR [31], LID [32]
| (Logits-based | LogitNorm [33], UE-NL [34], DML [35]
Noon Ee— | ConfiCali [36], CODEs [37], QMG [38], VOS [39], NPOS [40], SHIFT [41], ATOL [42],
SSOD [43], SEM [44], Forte [45], HamOS [46], POP [47]
| (Prototype-based | Step [45], SIREN [49], CIDER [50]. PALM [51], ReweightOOD [52], AROS [53], PES [54]
L ;"D;P;tﬂ:ll pase: \— OLTE [55], I-Mixup [56], AREO [57], IDCP [5&], Open-Sampling [55], COOD [s0]

— Boundary Regularization — OF [61], ELOC [62], Why-ReLLT [63], SSL-GOOD [64], EnergyOE [65], MixOE [66]

L Outlier Mining L BD-Resamp [47], POEM [¢5], DAOL [9], DOE [70], MixOE [s6], DivOE [71]
L Tmbalanced ID L PASCAL [72], COCL [73], BERL [74], EAT [75]

— Output-based LMSP [1] MaxLogits [76], Energy [65], GEN [77], ZODE [75], LogicOOD [79]
| Distance-based | Mahalanobis [80], NNGuide [81]. KNN [82], 55D [83] Mahalanchis++ [34]

| Gradient-based | Grad [85], GradNorm [26], GradOrth [57], GAIA [85], OPNP [g5], FRO [90]

ODIN [91], Redct [92], VRA [93], SHE [94], ViM [95], Neco [96], ASH [97], NAC [98]
- Feature-hased — Optimal-FS [99], BLOOD [100], SCALE [101], DDCS [102], LINe [103], KANs [104],
CADRef [105], TTP [106], NCI [107]

L Density -based — GEM [108], ConjNorm [109]

— Model-optimization-based — WOODS [110], AUTO [11], SODA [12], ATTA [13], SAL [14]

L Model-optimization-free | — ETLT [15], AdaOOD [111], GOODAT [16], RTL [112], 0ODD [113]
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